S)7—63
S0
JEv/o/

Real—Tnme Hierarchically Distributed Processing-Network-—-—
Interaction Simulation 1 g()

W.F. Zimmerman and C. Wu J 57 '
Jet Propulsion Laboratory
California Institute of Technology
Pasadena, CA 91109

1. Abstract
The Telerobot Testbed is a hierarchically distributed processing system which is linked
Eogether through a standard, commercial Ethernet. Standard Ethernet systems are primarily

esigned tc manage non-real-time information transfer. Therefore, collisions on the net
i.e., two or more sources attempting to send data at the same time) are managed by randomly
&eschedulan one of the sources to retransmit at a later time interval. Although acceptable
ﬁor transmitting noncritical data such as mail, this particular feature is unacceptable for
jreal-time hierarchical command and control systems such as the Telerocbot. Data transfer and
(schedulinq simulations, such as token ring, offer solutions to collision management, but do
inot appropriately characterize real-time data transfer/interactions for robotic systems.
Therefore, models like these do not provide a viable simulation environment for understanding
real-time network loading. A real-time network loading model is being developed which allows
processor-to-processor interactions to be simulated, collisions (and respective probabilities)
to be logged, collision-prone areas to be identified, and network control variable adjustments
to be reentered as a means of examining and reducing collision-prone regimes that occur in the
process of simulating a complete task sequence. The phase-one development results are
presented.xq_4h+e—fang Results include 1) the theoretical foundation for the network flow
model, 2) an overview of the simulation design and constraints, and 3) the software design.
Ultimately, the simuiction will be used o0 examine potential loading problems as out-year demo
. performance improvements cause increased data traffic. The simulation will also provide a

f systematic means of managing resulting loading problems.

kTT'T;??Bduction

Distributed processing systems are becoming extremely common for passing mail between
processors that are collocated in the same facility or separated by large geographic
distances. Therefore, viable commercial systems have been developed that place processors on
communication networks. For purposes of passing mail between processors, studies on Ethernet
local network efficiencies have shown mean response frequencies on the order of 39.5 ms, with
1008 of all traffic arriving by 200 ms (Ref. 1). Average utilization (on the order of 122
bytes per packet) with 10 hosts (processors) on the net indicates mean arrival times on the
order of 10 ms (Ref. 1). Under normal operating conditions, the above response times are
excel lent. If variable hosts require an intermediate protocol package to ensure message
consistency, then an additional mean overhead of 7 to 10 ms is not unusual. Again, if mail
passing is the primary occupation of the network, then 20-50 ms is perfectly acceptable.

The Telerobut Testbed i: .resently employing an Ethernet (with DECnet protocol) systea
to facilitate interprocessor communication within the overall system computer hierarchy.
wWhere normal mail passing finds response times on the order of 20-50 ms perfectly acceptable,

tobotic systems find delays in excess of 10 ms undesirable. The key reason why it is
important to minimize signal delays is ,otential control instabilities at the lowest level of
the control hierarchy (i.e., the manipulator end-effector sertvo control level). In

hierarchical command and control systems, commands must be passed from the system exec level
through several intermediate contiol levels before they reach the servo countrol level. In
the Telerobot, the cperator acts as the system exec by confirming the automated task sequence
with the Al planner (the next level). The planner forwards high-level task commands to the
run-time controller (the third level in the hierarchy) where each task is broken down into a
string of primitives containing important end-point state variables, trajectory via points,
and forcestorque i1nfarmation. The run-time controller then forwards requests and commands to
the manipulator control and sensing/perception processors for control execution (the fourth
level of the hierarchy). Additionally, because of mismatches between processor protocols, a
netwotk i1nterface package is necessary to maintain protocol consistency over the net. Even
though there 1s a discrete hierarchy for command passing, each processor will be
simultaneously managing outqgoing commands and incoming requests (i.e., requests for
world-state updates from higher leve! processors). In a static environment in which all
tixtures are stationary, the effect of collisions on the net (two ur more hosts trving to

@ 17

send data at the same time) will be to merely degrade the rate at which the manipulators aad
end-effectors respond to incoming commands. However, in ¢ dynamic environment in which
objects or obstacles are moving (such as a rotating satellite), the degradation in speed
could cause significent control prodlems and potential damege ¢tc the manipulstors amd
end-effectors.

Technigques have been develo which ensure that network collisions are minimized. One

of the most popular mse s 18 ng. o ing techniqus sically assumes
message packets arrive according to a random process (Ref. 2). A single control tokem
circulates around the ring from one host processor to the next. When a host observes that
the token has been received, a dats packet is queuved for transmission. The token basically
completes an array of “and” gate inputs and allows the packet to be transmitted. Upon
completion, the token is passed to the next host, and so on, until it returns to enable
another packet to be sent. Although this approach minimizes collisions on the net, it does
not enable asynchronous network traffic (such as would be experienced by the telerobot) to
propagate back and forth. Por example, if an emergency stop signal was required in response
to a calculated error, then control problems could arise if the processor that needed to seand
the signal had to wait a full cycle to receive the token.

Therefore, in developing a simulation for the Telerobot command and control hierarchy,
attention had to be paid to developing a more stochastic network event process. Stochastic
petri-nets (Ref. 3) and stochastic activity networks (Ref. 4) provided the most fruitful
basis for modeling and simulating message traffic on the telerobot distributed processing
network. These models were useful because they basically model 1) the arrival of packets, 2)
the queuing of packets, 3) the propagation of data, and 4) the detection of collisions. The
Telerobot distributed processing hierarchy can be characterized as shown in Figure 1.

1/0 - INPUT/OUTPUT
AlP

Figure 1. Telerobot Distributed Processing Hierarchy (Automated Control)

Figure 1 shows the operator control station (OCS) interfacing with the testbed exec
(TBE) and the AI planner (AIP). During teleoperation the intermediate levels of the
hierarchy are bypassed and the OCS/TELEOP interfaces directly with the manipulator control
mechanization (MCM) and sensing/perception (S&P) subsystems. The TBE also interfaces with
all other subsystems. However., tor the FY 1987 and 1988 demos any robust control capability
for the TBE will be suppressed; only system initialization and configuration will exist,
which primarily requires a one-on-one interface with each subsystem in the hierarchy during
start-up. At the AIP level of the hierarchy the planner interfaces with the OCS, TBE, and
the run-time controller (RTC). Again, because of the hierarchical design, the TBE and OCS
interfaces occur respectively during the system start-up and initialization phase, followed
by the task sequence (menu) confirmation phase. The RTC interface occurs alternately as each
task element in the sequence is presented to the operator for review/confirmation after the
RTC has retrieved and forwarded the various world-state parameters to fill the menu. The RTC

174

interface is also initiated after the menu has been appropriately completed and the AIP has
forwarded the first set of execution commands. The RTC then receives those cosmands and
proceeds to pass specific control primitives down to the MCH and S&P subsystems. It should
be noted that during task execution at the MCM and S&P level of the hierarchy (the servo
control level), any of the uppe: levels (i.e., the AIP or RIC) can request status reports to
monitor task progression and update their respective world-state data bases. The reader
should note the indicated interaction between the MCH and S&P subsystems. This iateraction
owly rotating satellite).
During the execution of a task macro, communication with the upper levels of the hierarchy
can be teamporarily delayed to insure that comsunication delays are minimized in order to
prevent potential coatrol ianstability asssociated with the dynamic environment. For the
FY 198771988 demos, the NCM and S&P subsystems will interface with each other through either
a parallel interface (in which case the net will be bypassed) or the planned DECnet network
interface package (MIP). Figure 1 clearly shows that the area of concern, in terms of
asynchronous requests, potential collisions, and subsequent delays in execution, is at the
third level of the hierarchy (RTC). Table 1 summarizes the various operational modes.
processor involvement, data transmission fregquencies, and data rates as expected for the
Telerobot Testbed.

Table 1. Expected Testbed Processor Performance

Processors Freq. of Order of Mag.
Operational Mode Invo.ved Data Trans. Data Rate (Bits/Sec)
Start-up/Shut- OCS - TBE
down TBE - AIP «10-3 nz <102 bps
TBE - RTC
TBE - MCM/S&P
Status/Initial- TBE - OCS
ization TBE - AIP
TBE - RTC 10-1-10~2 Hz 103 bps
TBE - MCM/S&P
AIP - RTC
RTC - MCM/S&P
* Planning OCS -~ AIP
AIP - RTC .5 - 1 Hz 103 bps
RTC - MCM
RTC - S&P
Execution AIP - RTC RTC - 36 Mz 103-104 bps
RTC - MCM/SEP = ~ccmmmcemccccmcmcccceccccccccemcrmecaman——as
~ Autonomous TBE - AIP/RTC/ MCM - 36 Hz 103-104 bps
MCM/SEP ceccmeceee et m e cceec—ece e
SsP - 5 Hz/50 Hz 104-105 bps
during vision
servoing
- Teleop OCS - Teleop
Teleop -~ MCM < S Hz 103 bps
OCS - MCM
OCS - S&P

Considering the above expected loading, the network activity is very low for the
start-up, statuss/initialization, and planning operational modes. This is Dbecause at any
given time only two processors are actually talking to each other. This is one of the
advantages of the hierarchical design. Furthermore, the communication is at a fairly low
rate and on the order of “question-answer” type interactions. Since the bandwidth of the
Ethernet is on the order of 10 Mbps, the network will only be utilized at a max of .001-.01%
capacity. The planning mode similarly falls into the 1low utilization category. As
illustrated by Figure 1 and confirmed by the above table. the area of concern revolves around
the autonomocus control execution mode. Both the transamission frequency and data rates
increase substantially. Even though the utilization only increases to .1-1\ capacity, the
concern with this particular portion of the system in terms of modeling arises from projected
substantial increaser in the out-year utilization. Por modeling this critical area in the
distributed processor configuration it appears that at some time in the task execution mode,
three to five processors might be competing for access to the net. Also, the longer.the net
is occupied by one processor, the greater the odds become that more than one processor will
be competing for access to the net. The major overhead variables that surface from the above

175

design and discussion (and confirmed by the literature (Refs. 3 and 4)) are as follows:

1. The number of processors (hosts) attempting to communicate with each other at one
time. ’

2. The frequency at which the processors communicate.

3. The size of the data blocks being communicated.

4. The internal subsystem processing time per standard data block.

5. The internal RIP protocol delay.

6. The queue time for backlogged data packets before they get transmitted (from the NIP
to the host}.

7. The retransmission delay resulting from a collision.

8. The EBthernet transaission interval per data block.

For this phase-one development activity, the simulation will only model network
interactions involving the AIP, RTC, MCM, and S&P. The frequency at which the processors
communicate or transmit data pacxets will be synchronized for task execution commands (i.e.,
a data packet sent by processor n to processor n+l must be acknowledged on receipt before
processor n+l can send a packet to processor n+2) and randomly selected for data update
requests. The size of the data blocks *being transmitted will be randomly selected within the
respective bps ranges given in Table 1. The RIP internal overhead will be a constant (i.e.,
a mean value of 7 ms). The queue time delay will be 0 if the queue is empty, and increased
accordingly as the gqueue increases based on actuai experience with the NIP. The
retransmission interval will be based on the Ethernet hardware specs and each retransmission
time will be selected randomly within that interval. The internal processing time will be
established by multiplying the specified average hardware internal overhead per data block
times the randomly selected data block size. Similarly, the Ethernet overhead is determined
by multiplying the inverse of the 10 Mbps times the randomly s=lected data block size. Since
all processors are collocated in one facility, distance will not be a factor in the Ethernet
overhead.

3. Model Description

The basic problem is to establish the time interval required to move an event (e)
successfully from processor (n) to processor (n+l), which in turn must move the event to pro-
cessors (n+2) and (n+3). If, at any time, the state processing and sojourn times for an event
generated by a given processor are equal to (or overlap) the state processing and sojourn
times for an event generated by an interacting processor, then a collision occurs and the
respective events receive an additional retransmission time delay, are placed in a queue, and
a new state is calculated/tested to determine if a collision occurs. The event must pass
successfully through the four processors before it is discarded and a new event randoamly
selected. Before the event is discarded, the vital statistics of 1) total sojourn time, and
2) number of collisions are collected and stored for calculating the overall system delay and
collision probabilities. The events and interactions are structured as an input/output flow
problem with each processor being linked by tagged events (e.g., an event that successfully
leaves the AIP (processor nsl) as an output becomes an input to the RTC (processor n+ls=s2), and
so on through the hierarchy). Mathematically, the overhead state time interval (S) for pro-
cessor n and event 1 (e=1) can be stated as the sum of all internal processor state overheads
(sg):

1 p I
D it

e=1

™

seo n=1
=1

<]

where, the state overheads are the delays indicated in Section 2 above.

By not suppressing the upper bound on the event summation, the total overhead time for
ptocessor (n) can be calculated using:

u P

: Seo - Z Z seo nll (2)

e=]l o=l

where (u) represents the total events c:r commands and requests associated with a given task
sequence. It then follows that the total delay (S tot) associated with events passing
thiough the hierarchy (in this case on.iy the AIP (n=l), RTC (nel), MCX (ne3), and S&P (ned)
can be given 3as:

4
stot - Z seo 1B

nel

176

Conditionally, if an event arrival at a processor conflicts with another event input/output
arrival at the same processor, then a collision (and additional delay) is imposed. The
following collision conditions hold for a given event arrival:

eithet:
P I P I
2 'eo n=1 * Z seo nenel)
o=l o=l

or, given the Ethernet overhead (E)

| 4 | 4 P
e, | | | ;
Z ‘seo) eo n=n+l ‘Z seo n=1 (Z s‘o nan+l *

O=] o=l o=1

The above later condition simply means that the net is occupied and processor n+l cannot
accept the command from processor n. The command from processor n would then be placed in
processor n+l's queue and assigned a delay interval commensurate with its place in the queue.

Calculation of the collision probability for each processor, and the hierarchy as a
whole, is done by merely employing standard statistical expressions using the 1logged
collisions and total events processed.

The last major constraint employed for the model was a definition of “real-time.” This
was necessary since collisions are really only important if they indeed cause a subsequent
degradation in system performance (i.e., speed). Therefore, after each event ripples through
the hierarchy and the collision/time delay data are logged, the system delay is compazed
against the actual lag time of the system to determine if the lag time was exceeded. It is
presently planned to use the manipulator control lag as the real-time baseline. For example,
this means that if control lag for manipulator movement (under the planned operating speed)
is 20 ms, then a collision aggregate delay of 15 ms would not affect operating speed at all.
However, as response and operating speeds increase with improvements in manipulator control
design, acceptable aggregate delays might be driven down into the 2-3 ms range.

The above model is still being examined from the standpoint of completeness and
available data. As the software development proceeds and data bases are assembled,
additional changes may be incorporated to further define the processor interaction
environment. The next section briefly summarizes the software program being developed to
implement the model.

4. Description of Simulation Program

In this section we will illustrate the construction of an event scheduling simulator for
the network model discussed in the previous sections. In this simulator each event, created
and scheduled with a time tag, represents the main activity of the network model. This time
tag decides the ordering of events in the event pool of the system. This ordering also
determines the execution of the events and therefore describes the operation of the network
model. During the operation, there is always one available event.

As shown in Figure 2, the simulation program consists of six major components:
initialization, event access, housekeeping, network activity, event handling, and report
generation. The initialization module prompts the required system parameters such as number
of desired RTC commands, initializes global variables, and sets the initial conditions cf the
system. The event access module uses a time tag and event number for each event to select a
most recent event for execution. The execution of an event means activation of the event,
transmission of the communication packet, and processing of the command actions if any. The
housekeeping module advances the system clock based on the time tag of the curreat event,
generates data requests periodically, and collects the required statistics data from the
network activity module. The network activity module evaluates the interactions (state
overhead) of the available events in the Ethernet network. The event handling module
performs the processing of the command actions to generate further activity in the system.
It contains several handlers to deal with different types of events. The report generation
mudule assembles the required system delay and collision probabilities once the simulation
terminates. The system will terminate when the event access module cannot get an available
event, which means the event pool is empty.

‘ Among these siz modules, only the network activity module and event-handling module
directly relate themselves to behavior of the network model. Therefore, they will be
discussed in more detail.

177

INITIALIZATION

EVENT /@

YES

NO

HOUSEKEEPING REPORT GENERATION

R

NETWORK ACTIVITY m

EVENT HANDLING

Figure 2. The Main Flow Diagram of the Simulation Program

. The flowchart for the network activity module is shown in Figure 3. The main function
of this module is to detect and record the collision of events. Collision occurs when two or
more events are trying to occupy the network at the same time. Therefore, in order to detect
the collision, the simulator computes the period of the current event residing on the network
and with a given processor, and then searches through the event pool to check if any other
events in the event pool will be arriving during this same period. If a collision occurs,
all the involved events will be removed from the event pool and be appended to the network
queues associated with the processor. Note that a random time delay will be added to each
collided event for retransmission. 1If no collision occurs, the event becomes active and is
ready to be processed (passed to the next processor) by the event handling module. The passed
event is an output of the latter processor and an input to the next processor.

COMPUTE THE TRANSMISSION
PERIOD FOR THE CURRENT EVENT

}

SEARCH ALL THE AVAILABLE
EVENTS IN THE EVENT POOL

1

COMPUTE RETRANSMISSION DELAY; SET EVENT TO BE ACTIVE;
APPEND COLLIDED EVENTS INTO RECORD THE TRANSMISSION TIME,
JUEUE; SET NETWORK TO BE FREE; SET NETWORK TO BE BUSY

|

‘ RETURN >

Figure 3. The Flow Diagram of the Network Activity Module

The flow diagram of the event-handling module is shown in Figure 4. There are four
types of events in this simulator: command, acknowledge, request, and response. They will

178

be handled differently. Once a command event is received, the subsystem will generate an
acknowledge event back to the originating subsystem. Then the requested command is passed to
the next processor. Concurrently, the AIP and the RTC processors use request events to
acquire data from lower level of the hierarchy to update their own data bases periodically.
The response event is the answer for the command and request events. Since the command event
is executed sequentially, the completion of the current event also activates the next command
event until all events are executed in the dummy task sequence.

ACKNOWLEDGE
EVENT REQUEST NO
] SET EVENT EVENT? R
‘PROCESS THE EVENT TOBEOLD YES SET COMPLETION TIME
: FOR THE CORRESPONDING
4 PROCESS THE COMMAND EVENT
ISSUE A RESPONSE m EVENT T
EVENT § ACTIVATE THE
SUBSEQUENT
ISSUE A
R COMMAND EVENT
SET EVENT TO RESPONSE EVENT L
8E ACTIVE '
SET THE CORRESPONDING
COMMAND EVENT TO

RETURN

Figure 4. The Flow Diagram of the Event-Handling Module

5. Conclusions

In this papar we discuss the simulation model for a real-time hierarchically distributed
system using an Ethernet local area network. The probability and the impact of message
collision on the network is the main interest. The conceptual design of the ‘cimulation
program was completed. The implementation is under way. .

s

Although the simulation is not operable at this time, a considerable amount of
information concerning network design and operation has been obtained. This information has
been used. to design the Telerobot processor protocol and communication architectures in such
a manner S0 as to minimize network interference. These design features include 1) a high
bandwidth operating environment (i.e., 10 Mbps) to minimize the overhead on the Ethernet, 2)
the overall hierarchical design which prioritizes and reduces the functions that lower levels
in the hierarchy must perform, 3) inclusion of a special parallel interface at the servo
control level of the hierarchy to facilitate off-net high data rate transfer during critical
dynamic coordination tasks (e.g., satellite grappling), 4) adjustment of the Ethernet
retransmission interval to correspond with processor priozity relative to control execution
(e.g., during error management, the RTC and MCM processors require greater access to the net
than the AIP), and S) the inclusion of a queue I/0 in the network interface protocol package
to accept incoming commands/requests even though the net is occupied.

Using this simulator we can evaluate the system performance in terms of collisions
during message transfer on the network, network utility, the data packet retransaission
delays., and data request rate. For example, we can determine the response of the network to
a utility level (i.e., transmission frequency), establish the lower and upper bound of the

179

data packet size, obtain an optimal data :equesvt rate, calculate new data flow coatrol
parameters to minimize collisions, and consequently resolve any system bottlenecks.

6. Acknowledgments

The research described in this paper was carried out by the Jet Propulsion Laboratory.

California Institute of Technology, under a contract with the Office of Aetonautic: and Space
Technology (OAST), National Aeronautics and Space Administration (NASA).

7. References

(1]
[2]
(&3

[4]
(5]
(6]

J.F. Shoch and J.A. Hupp, °“Measured Performance of an Ethernet Local HNetwork.,”
Communication of the ACM, Vol. 23, No. 12, December 1980.

P. Hass and G. Shedler, “Regenerative Simulation Methods for Local Area Computer
Networks,” IBM J. Res. Develop., Vol. 29, No. 2, March 1985.

M.A. Marsan et al., "A Class of Generalized Stochastic Petri Nets for the Performance
Evaluation of Multiprocessor Systeams,” ACM Transactions on Computer Systems, Vol. 2,
No. 2, May 1984, pp. 93-122.

M.H. Woodbury and W.H. Sanders, "An Ethernet Model Simulation Using Stochastic Activity
Networks,” draft report, Oct. 1986.

B.W. Stuck and E. Arthurs, "A Computer and Communications Network Performance Analysis
Primer,* Prentice Hall, 198S.

H. Kobayashi, “"Modeling and Analysis: An Introduction to System Performance Evaluatiom
Methodology,” Addison-Wesley, 1981l.

